Introduction
We often encounter problems involving the use of three dimensions: length, width and height. With such three-dimensional measurements, we can calculate measurements of cubic meters and volume.
Cubic meter
The fundamental unit of volume is called cubic meter. The cubic meter (m^{3}) is a measure corresponding to the space occupied by a cube with 1 m edge.
Multiples and submultiples of cubic meter
Multiples | Core Unit | Submultiples | ||||
cubic kilometer | cubic hectometer | cubic parameter | cubic meter | cubic decimeter | cubic centimeter | cubic millimeter |
km^{3} | hm^{3} | dam^{3} | m^{3} | dm^{3} | cm^{3} | mm^{3} |
1,000,000,000m^{3} | 1,000,000 m^{3} | 1,000m^{3} | 1m^{3} | 0.001m^{3} | 0.000001m^{3} | 0.000000001 m^{3} |
Multiples | cubic kilometer | km^{3} | 1,000,000,000m^{3} |
cubic hectometer | hm^{3} | 1,000,000 m^{3} | |
cubic parameter | dam^{3} | 1,000m^{3} | |
Core Unit | cubic meter | m^{3} | 1m^{3} |
Submultiples | cubic decimeter | dm^{3} | 0.001m^{3} |
cubic centimeter | cm^{3} | 0.000001m^{3} | |
cubic millimeter | mm^{3} | 0.000000001 m^{3} |
Reading volume measurements
The reading of volume measurements follows the same procedure as for linear measurements. However, we must use three digits in each unit in the table. In case any house is incomplete, it is completed with zero (s). Examples:
Read the following measurement: 75.84m^{3}
km^{3} | hm^{3} | dam^{3} | m^{3} | dm^{3} | cm^{3} | mm^{3} |
75, | 840 |
It reads "75 cubic meters and 840 cubic decimeters".
Read the measurement: 0,0064dm^{3 }
km^{3} | hm^{3} | dam^{3} | m^{3} | dm^{3} | cm^{3} | mm^{3} |
0, | 006 | 400 |
It reads "6400 cubic centimeters".
Next: Transforming Units